Generates a data frame of bins representing the kernel density (or histogram) of a vector, suitable for use in generating predictive distributions for visualization. These functions were originally designed for use with the now-deprecated predict_curve(), and may be deprecated in the future.

density_bins(x, n = 101, ...)

histogram_bins(x, n = 30, breaks = n, ...)

Arguments

x

A numeric vector

n

Number of bins

...

Additional arguments passed to density() or hist().

breaks

Used to set bins for histogram_bins. Can be number of bins (by default it is set to the value of n) or a method for setting bins. See the breaks argument of hist().

Value

A data frame representing bins and their densities with the following columns:

mid

Bin midpoint

lower

Lower endpoint of each bin

upper

Upper endpoint of each bin

density

Density estimate of the bin

Details

These functions are simple wrappers to density() and hist() that compute density estimates and return their results in a consistent format: a data frame of bins suitable for use with the now-deprecated predict_curve().

density_bins computes a kernel density estimate using density().

histogram_bins computes a density histogram using hist().

See also

See add_predicted_draws() and stat_lineribbon() for a better approach. These functions may be deprecated in the future.

Author

Matthew Kay

Examples

# \donttest{

library(ggplot2)
library(dplyr)
library(brms)
library(modelr)

theme_set(theme_light())

m_mpg = brm(mpg ~ hp * cyl, data = mtcars)
#> Compiling Stan program...
#> Start sampling
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 6e-06 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.147623 seconds (Warm-up)
#> Chain 1:                0.099001 seconds (Sampling)
#> Chain 1:                0.246624 seconds (Total)
#> Chain 1: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 2).
#> Chain 2: 
#> Chain 2: Gradient evaluation took 3e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2: 
#> Chain 2: 
#> Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 2: 
#> Chain 2:  Elapsed Time: 0.109959 seconds (Warm-up)
#> Chain 2:                0.099241 seconds (Sampling)
#> Chain 2:                0.2092 seconds (Total)
#> Chain 2: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 3).
#> Chain 3: 
#> Chain 3: Gradient evaluation took 3e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3: 
#> Chain 3: 
#> Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 3: 
#> Chain 3:  Elapsed Time: 0.121212 seconds (Warm-up)
#> Chain 3:                0.098412 seconds (Sampling)
#> Chain 3:                0.219624 seconds (Total)
#> Chain 3: 
#> 
#> SAMPLING FOR MODEL '2d19b3a372313df641edf05db5e9f303' NOW (CHAIN 4).
#> Chain 4: 
#> Chain 4: Gradient evaluation took 4e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4: 
#> Chain 4: 
#> Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
#> Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 4: 
#> Chain 4:  Elapsed Time: 0.131623 seconds (Warm-up)
#> Chain 4:                0.097111 seconds (Sampling)
#> Chain 4:                0.228734 seconds (Total)
#> Chain 4: 

step = 1
mtcars %>%
  group_by(cyl) %>%
  data_grid(hp = seq_range(hp, by = step)) %>%
  add_predicted_draws(m_mpg) %>%
  summarise(density_bins(.prediction), .groups = "drop") %>%
  ggplot() +
  geom_rect(aes(
    xmin = hp - step/2, ymin = lower, ymax = upper, xmax = hp + step/2,
    fill = ordered(cyl), alpha = density
  )) +
  geom_point(aes(x = hp, y = mpg, fill = ordered(cyl)), shape = 21, data = mtcars) +
  scale_alpha_continuous(range = c(0, 1)) +
  scale_fill_brewer(palette = "Set2")
#> Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
#> dplyr 1.1.0.
#>  Please use `reframe()` instead.
#>  When switching from `summarise()` to `reframe()`, remember that `reframe()`
#>   always returns an ungrouped data frame and adjust accordingly.


# }